Uip WebClient 实现
Uip WebClient 实现的功能是接入互联网,通过http协议访问某个网站。HTTP是一种应用层协议。基于TCP/IP。 TCP/IP作为传输层协议解决数据如何在网络中传输,HTTP作为应用层协议,解决如何包装数据。默认的HTTP访问端口为80端口。
Uip + stm32 的移植参见 Uip + Stm32移植问题总结
相关文件:
Apps/resolv.c 文件实现的是DNS,动态域名解析等。
Apps/webclient.c主要实现HTTP的协议的解析。
首先需要修改User/uip-con.h配置文件:
#define UIP_CONF_LOGGING 0 //logging off
//typedef int uip_tcp_appstate_t; //出错可注释
typedef int uip_udp_appstate_t; //出错可注释
/#include “smtp.h”/
/#include “hello-world.h”/
/#include “telnetd.h”/
/#include “webserver.h”/
/#include “dhcpc.h”/
/#include “resolv.h”/
#include “webclient.h” //包含WebClient 文件
#include “app_call.h” //加入一个Uip的数据接口文件
修改User/mainc 调用相关WebClient函数 配置DNS以及设定页面地址
#include “stm32f10x.h”
#include “stdio.h”
#include “string.h”
#include “uip.h”
#include “uip_arp.h”
#include “tapdev.h”
#include “timer.h”
#include “ENC28J60.h”
#include “SPI.h”
#define PRINTF_ON 1
#define BUF ((struct uip_eth_hdr )&uip_buf[0])
#ifndef NULL
#define NULL (void )0
#endif / NULL /
static unsigned char mymac[6] = {0x04,0x02,0x35,0x00,0x00,0x01};
void RCC_Configuration(void);
void GPIO_Configuration(void);
void USART_Configuration(void);
int main(void)
{
int i;
uip_ipaddr_t ipaddr;
struct timer periodic_timer, arp_timer;
RCC_Configuration();
GPIO_Configuration();
USART_Configuration();
SPInet_Init();
timer_set(&periodic_timer, CLOCK_SECOND / 2);
timer_set(&arp_timer, CLOCK_SECOND 10);
SysTick_Config(72000);
//以太网控制器驱动初始化
tapdev_init(mymac);
//Uip 协议栈初始化
uip_init();
uip_ipaddr(ipaddr, 192, 168, 1, 15); //配置Ip
uip_sethostaddr(ipaddr);
uip_ipaddr(ipaddr, 192, 168, 1, 1); //配置网关
uip_setdraddr(ipaddr);
uip_ipaddr(ipaddr, 255, 255, 255, 0); //配置子网掩码
uip_setnetmask(ipaddr);
webclient_init();
resolv_init();
uip_ipaddr(ipaddr, 8,8,8,8); //DNS server ,Google DNS Server
resolv_conf(ipaddr);
resolv_query(“www.ichanging.org");
while(1){
uip_len = tapdev_read(); //从网卡读取数据
if(uip_len > 0)
{ //如果数据存在则按协议处理
if(BUF->type == htons(UIP_ETHTYPE_IP)) { //如果收到的是IP数据,调用uip_input()处理
uip_arp_ipin();
uip_input();
/ If the above function invocation resulted in data that
should be sent out on the network, the global variable uip_len is set to a value > 0. /
if(uip_len > 0)
{
uip_arp_out();
tapdev_send();
}
}else if(BUF->type == htons(UIP_ETHTYPE_ARP)){ //如果收到的是ARP数据,调用uip_arp_arpin处理
uip_arp_arpin();
/ If the above function invocation resulted in data that
should be sent out on the network, the global variable uip_len is set to a value > 0. /
if(uip_len > 0)
{
tapdev_send();
}
}
}else if(timer_expired(&periodic_timer)){ //查看0.5s是否到了,调用uip_periodic处理TCP超时程序
timer_reset(&periodic_timer);
for(i = 0; i < UIP_CONNS; i++) {
uip_periodic(i);
/ If the above function invocation resulted in data that
should be sent out on the network, the global variable uip_len is set to a value > 0. /
if(uip_len > 0)
{
uip_arp_out();
tapdev_send();
}
}
for(i = 0; i < UIP_UDP_CONNS; i++)
{
uip_udp_periodic(i); //处理udp超时程序
/ If the above function invocation resulted in data that
should be sent out on the network, the global variable uip_len is set to a value > 0. /
if(uip_len > 0)
{
uip_arp_out();
tapdev_send();
}
}
/ Call the ARP timer function every 10 seconds. / //10s到了就处理ARP
if(timer_expired(&arp_timer))
{
timer_reset(&arp_timer);
uip_arp_timer();
}
}
}
}
/**WebClient Set***/
void resolv_found(char name, u16_t ipaddr) //DNS 找到对应服务器IP
{
//u16_t ipaddr2;
if(ipaddr == NULL) {
printf(“Host ‘%s’ not found.\n”, name);
} else {
printf(“Found name ‘%s’ = %d.%d.%d.%d\n”, name,
htons(ipaddr[0]) >> 8,
htons(ipaddr[0]) & 0xff,
htons(ipaddr[1]) >> 8,
htons(ipaddr[1]) & 0xff);
if(webclient_get(“www.ichanging.org", 80, “/index.php”))
{
printf(“the connection was initiated”);
}else{
printf(“the host name could not be found in the cache or TCP connection could not be created.”);
}
}
}
void webclient_closed(void)
{
//printf(“Webclient: connection closed\n”);
}
void webclient_aborted(void)
{
//printf(“Webclient: connection aborted\n”);
}
void webclient_timedout(void)
{
//printf(“Webclient: connection timed out\n”);
}
void webclient_connected(void)
{
//printf(“Webclient: connected, waiting for data…\n”);
}
void webclient_datahandler(char data, u16_t len)
{
//printf(“Webclient: got %d bytes of data.\n”, len);
}
/***Stm32 Set***/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA , &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA , &GPIO_InitStructure);
}
void RCC_Configuration(void)
{
/ 定义枚举类型变量 HSEStartUpStatus /
ErrorStatus HSEStartUpStatus;
/ 复位系统时钟设置/
RCC_DeInit();
/ 开启HSE/
RCC_HSEConfig(RCC_HSE_ON);
/ 等待HSE起振并稳定/
HSEStartUpStatus = RCC_WaitForHSEStartUp();
/ 判断HSE起是否振成功,是则进入if()内部 /
if(HSEStartUpStatus == SUCCESS)
{
/ 选择HCLK(AHB)时钟源为SYSCLK 1分频 /
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/ 选择PCLK2时钟源为 HCLK(AHB) 1分频 /
RCC_PCLK2Config(RCC_HCLK_Div1);
/ 选择PCLK1时钟源为 HCLK(AHB) 2分频 /
RCC_PCLK1Config(RCC_HCLK_Div2);
/ 设置FLASH延时周期数为2 /
FLASH_SetLatency(FLASH_Latency_2);
/ 使能FLASH预取缓存 /
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/ 选择锁相环(PLL)时钟源为HSE 1分频,倍频数为9,则PLL输出频率为 8MHz 9 = 72MHz /
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/ 使能PLL /
RCC_PLLCmd(ENABLE);
/ 等待PLL输出稳定 /
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
/ 选择SYSCLK时钟源为PLL /
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/ 等待PLL成为SYSCLK时钟源 /
while(RCC_GetSYSCLKSource() != 0x08);
}
/ 打开APB2总线上的GPIOA时钟/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_USART1, ENABLE);
}
void USART_Configuration(void)
{
USART_InitTypeDef USART_InitStructure;
USART_ClockInitTypeDef USART_ClockInitStructure;
USART_ClockInitStructure.USART_Clock = USART_Clock_Disable;
USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;
USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge;
USART_ClockInitStructure.USART_LastBit = USART_LastBit_Disable;
USART_ClockInit(USART1 , &USART_ClockInitStructure);
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx;
USART_Init(USART1,&USART_InitStructure);
USART_Cmd(USART1,ENABLE);
}
#if PRINTF_ON
int fputc(int ch,FILE f)
{
USART_SendData(USART1,(u8) ch);
while(USART_GetFlagStatus(USART1,USART_FLAG_TC) == RESET);
return ch;
}
#endif
——————————————————
2012 11 17 更新
——————————————————
一直不知道如何给一个嵌入式设备通过公网直接发送信息,因为嵌入式设备没有一个固定的公网IP, 其实可以通过一种逆向的方法来解决,嵌入式设备可以定时向服务器主动提交请求,服务器可以再返回数据或指令,嵌入式设备获取后再分析处理。
2012 11 17 更新
——————————————————
一直不知道如何给一个嵌入式设备通过公网直接发送信息,因为嵌入式设备没有一个固定的公网IP, 其实可以通过一种逆向的方法来解决,嵌入式设备可以定时向服务器主动提交请求,服务器可以再返回数据或指令,嵌入式设备获取后再分析处理。
这样使用webclient 就可以实现更多的功能,webclient 定时向服务器请求页面,并获取页面返回的代码,就可以分析返回的代码,执行相应程序。